The Effects of Hydrogen Sulfide on the Processes of Exo and Endocytosis of Synaptic Vesicles in the Mouse

نویسندگان

  • O. B. Mitrukhina
  • A. V. Yakovlev
  • G. F. Sitdikova
چکیده

The effects of sodium hydrosulfide (NaHS), the donor of hydrogen sulfide (H2S), on the exo/endocytosis cycle of synaptic vesicles in the motor nerve ending of the mouse diaphragm were studied using intracellular microelectrode technique and fluorescent microscopy. NaHS increased the frequency of miniature end plate potentials (MEPPs), without changing their amplitude–time parameters. NaHS also increased the amplitude of the evoked postsynaptic responses during single stimulation (0.3 Hz), which was the evidence of the enhanced synaptic vesicle exocytosis. During high frequency stimulation (50 Hz), NaHS induced more significant decline of neurotransmitter release, probably due to the lower rate of synaptic ves icle mobilization from recycling pool to exocytic sites. NaHS also decreased the uptake of the fluorescent endocytic dye FM 1 43, which indicated the reduced endocytosis of synaptic vesicles. Thus, the H2S donor increases exocytosis and decreases the processes of synaptic vesicle endocytosis and mobilization in the mouse motor nerve ending.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Hydrogen Sulfide on Cold-Induced Oxidative Damage in Cucumis sativus L.

One of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops is low temperature. Hydrogen sulfide (H2S) is an important signaling molecule involved in several stress-resistance processes such as drought, salinity and heavy metal stresses in plants. The aim of this study was to investigate the effects of exogenous H2S...

متن کامل

Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons

In mature neurons synaptic vesicles (SVs) undergo cycles of exo-endocytosis at synapses. It is currently unknown whether SV exocytosis and recycling occurs also in developing axons prior to synapse formation. To address this question, we have developed an immunocytochemical assay to reveal SV exo-endocytosis in hippocampal neurons developing in culture. In this assay antibodies directed against...

متن کامل

Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice

Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...

متن کامل

Reducing the effect of salinity and lead on garlic (Allium sativum) seedling roots by improving oxidant defence under selenium and hydrogen sulfide

Selenium and hydrogen sulfide can alleviate the adverse effects of oxidative stress on plants by improving the oxidative defense system. In order to improve the oxidative defense system of garlic under lead and salinity stress by selenium and hydrogen sulfide, a factorial experiment was carried out using selenium and hydrogen sulfide in a completely randomized design with three replications. Ex...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013